17. The Levi-Civita Symbol and the Cross Product (2025)

Although the permutation systems eijke_{ijk}eijk and eijke^{ijk}eijk are indeed objects of immense beauty and utility, they are not tensors. I hope that at this advanced point in our narrative, we no longer have to extol the benefits of the tensor framework and may consider the tensor property to be of self-evident value. In this Chapter, we will introduce the Levi-Civita symbols εijk\varepsilon_{ijk}εijk and εijk\varepsilon^{ijk}εijk, named after Tullio Levi-Civita, which are the tensor versions, so to speak, of the permutation systems. Thanks to their tensor property, the Levi-Civita symbols open new avenues for the creation of invariant operations, such as the cross product, and various differential operators, such as the curl. Although the cross product has already been described in Chapter 3 from a geometric perspective, its component space representation is most effectively expressed with the help of the Levi-Civita symbols. Meanwhile, the curl will be discussed in Chapter 18.

17.1The definition of the Levi-Civita symbols

In nnn dimensions, the Levi-Civita symbols εi1in\varepsilon_{i_{1}\cdots i_{n}}εi1in and εi1in\varepsilon^{i_{1}\cdots i_{n}}εi1in are defined by the equations

εi1in=Zei1inand(17.1)εi1in=ei1inZ,(17.2)\begin{aligned}\varepsilon_{i_{1}\cdots i_{n}} & =\sqrt{Z}e_{i_{1}\cdots i_{n}}\text{ and}\ \ \ \ \ \ \ \ \ \ \left(17.1\right)\\\varepsilon^{i_{1}\cdots i_{n}} & =\frac{e^{i_{1}\cdots i_{n}}}{\sqrt{Z}},\ \ \ \ \ \ \ \ \ \ \left(17.2\right)\end{aligned}εi1inεi1in=Zei1inand(17.1)=Zei1in,(17.2)

where Z\sqrt{Z}Z is the volume element first introduced in Chapter 9. In the natural Euclidean dimensions, the above definition reduces to

εijk=Zeijkand(17.3)εijk=eijkZ,(17.4)\begin{aligned}\varepsilon_{ijk} & =\sqrt{Z}e_{ijk}\text{ and}\ \ \ \ \ \ \ \ \ \ \left(17.3\right)\\\varepsilon^{ijk} & =\frac{e^{ijk}}{\sqrt{Z}},\ \ \ \ \ \ \ \ \ \ \left(17.4\right)\end{aligned}εijkεijk=Zeijkand(17.3)=Zeijk,(17.4)

in three dimensions,

εij=Zeijand(17.5)εij=1Zeij(17.6)\begin{aligned}\varepsilon_{ij} & =\sqrt{Z}e_{ij}\text{ and}\ \ \ \ \ \ \ \ \ \ \left(17.5\right)\\\varepsilon^{ij} & =\frac{1}{\sqrt{Z}}e^{ij}\ \ \ \ \ \ \ \ \ \ \left(17.6\right)\end{aligned}εijεij=Zeijand(17.5)=Z1eij(17.6)

in two dimensions and

εi=Zand(17.7)εi=1Z(17.8)\begin{aligned}\varepsilon_{i} & =\sqrt{Z}\text{ and}\ \ \ \ \ \ \ \ \ \ \left(17.7\right)\\\varepsilon^{i} & =\frac{1}{\sqrt{Z}}\ \ \ \ \ \ \ \ \ \ \left(17.8\right)\end{aligned}εiεi=Zand(17.7)=Z1(17.8)

in one dimension. You may be surprised that the one-dimensional Levi-Civita symbols εi\varepsilon_{i}εi and εi\varepsilon^{i}εi remain remarkably useful objects, even though they do not exhibit the sign-alternating property associated with the permutation systems.

Our initial order of business is to investigate the tensor property of the Levi-Civita symbols εijk\varepsilon_{ijk}εijk and εijk\varepsilon^{ijk}εijk. To this end, we will first explore the transformation rules for the permutation systems eijke_{ijk}eijk and eijke^{ijk}eijk under a change of coordinates and subsequently extend those rules to the Levi-Civita symbols. We will discover that the Levi-Civita symbols are indeed tensors, albeit with a significant qualification.

17.2The permutation systems under a change of coordinates

As we noted in the previous Chapter, the permutation systems eijke_{ijk}eijk and eijke^{ijk}eijk are not tensors. In other words, if, say, eijke_{i^{\prime}j^{\prime }k^{\prime}}eijk, is defined in the primed coordinates in the exact same terms as eijke_{ijk}eijk in the unprimed coordinates, then there is no reason to expect that the two objects are related by the requisite identity

eijk=eijkJiiJjjJkk,(-)e_{i^{\prime}j^{\prime}k^{\prime}}=e_{ijk}J_{i^{\prime}}^{i}J_{j^{\prime}} ^{j}J_{k^{\prime}}^{k}, \tag{-}eijk=eijkJiiJjjJkk,(-)

and, indeed, this identity does not hold.

However, the combination on the right is familiar to us from our study of determinants in Chapter 16. Recall that for a second-order system AjiA_{j}^{i}Aji, we have

eijkAriAsjAtk=detAerst.(16.113)e_{ijk}A_{r}^{i}A_{s}^{j}A_{t}^{k}=\det A~e_{rst}. \tag{16.113}eijkAriAsjAtk=detAerst.(16.113)

Thus, if

JisthematrixcorrespondingtotheJacobianJii,(17.9)J\text{ is the matrix corresponding to the Jacobian }J_{i^{\prime}}^{i},\tag{17.9}JisthematrixcorrespondingtotheJacobianJii,(17.9)

then, according to the preceding identity,

eijkJiiJjjJkk=detJeijk.(17.10)e_{ijk}J_{i^{\prime}}^{i}J_{j^{\prime}}^{j}J_{k^{\prime}}^{k}=\det J~e_{i^{\prime}j^{\prime}k^{\prime}}.\tag{17.10}eijkJiiJjjJkk=detJeijk.(17.10)

Thus, the transformation rule for the subscripted permutation system eijke_{ijk}eijk reads

eijk=det1JeijkJiiJjjJkk.(17.11)e_{i^{\prime}j^{\prime}k^{\prime}}=\det{}^{-1}J~e_{ijk}J_{i^{\prime}} ^{i}J_{j^{\prime}}^{j}J_{k^{\prime}}^{k}.\tag{17.11}eijk=det1JeijkJiiJjjJkk.(17.11)

Correspondingly, the rule for the superscripted permutation symbol eijke^{ijk}eijk features the determinant of JJJ rather than its inverse, i.e.

eijk=detJeijkJiiJjjJkk.(17.12)e^{i^{\prime}j^{\prime}k^{\prime}}=\det J~e^{ijk}J_{i}^{i^{\prime}} J_{j}^{j^{\prime}}J_{k}^{k^{\prime}}.\tag{17.12}eijk=detJeijkJiiJjjJkk.(17.12)

Observe from the two identities above that the transformation rules for the permutation systems eijke_{ijk}eijk and eijke^{ijk}eijk deviate from the definition of a tensor only by the presence of detJ\det JdetJ. Let us then use this near miss as a rationale for introducing the concept of a relative tensor.

17.3Relative tensors

17.3.1Definition and elementary properties

A variant TjiT_{j}^{i}Tji with a representative collection of indices is called a relative tensor of weight MMM if it transforms according to the rule

Tji=detMJTjiJiiJjj.(17.13)T_{j^{\prime}}^{i^{\prime}}=\det{}^{M}J~T_{j}^{i}J_{i}^{i^{\prime} }J_{j^{\prime}}^{j}.\tag{17.13}Tji=detMJTjiJiiJjj.(17.13)

In particular, conventional tensors are relative tensors of weight 000, and are often referred to as absolute tensors to highlight their special place among relative tensors.

A relative tensor TTT of order zero is called a relative invariant and transforms according to the rule

T=detMJT.(17.14)T^{\prime}=\det{}^{M}J~T.\tag{17.14}T=detMJT.(17.14)

We should recognize that the term relative invariant is an oxymoron since the values TTT and TT^{\prime}T are generally distinct. In other words, a relative invariant is not invariant.

It is left as an exercise to show that the collection of relative tensors of a given weight are closed under addition and multiplication by numbers. In other words, the sum of two relative tensors of weight MMM as well as a product of a relative tensor of weight MMM and a number are also relative tensors of weight MMM. Thus, the collection of relative tensors of a given weight is closed under linear combinations. Furthermore, the product of a relative tensor of weight MMM and a relative tensor of weight NNN is a relative tensor of weight M+NM+NM+N. Finally, a contraction of a relative tensor of weight MMM is also a relative tensor of weight MMM.

Returning to the permutation symbols, which transform according to the equations

eijk=det1JeijkJiiJjjJkk(17.11)e_{i^{\prime}j^{\prime}k^{\prime}}=\det{}^{-1}J~e_{ijk}J_{i^{\prime}} ^{i}J_{j^{\prime}}^{j}J_{k^{\prime}}^{k} \tag{17.11}eijk=det1JeijkJiiJjjJkk(17.11)

and

eijk=detJeijkJiiJjjJkk,(17.12)e^{i^{\prime}j^{\prime}k^{\prime}}=\det J~e^{ijk}J_{i}^{i^{\prime}} J_{j}^{j^{\prime}}J_{k}^{k^{\prime}}, \tag{17.12}eijk=detJeijkJiiJjjJkk,(17.12)

we observe that eijke_{ijk}eijk is a relative covariant tensor of weight 1-11 while eijke^{ijk}eijk is a relative contravariant tensor of weight 111. (Since eijke_{ijk}eijk and eijke^{ijk}eijk consist of the exact same values, it is interesting that one and the same object can be interpreted as tensors of different kinds.) Meanwhile, according to the product property of relative tensors, the combination eijkerste_{ijk}e^{rst}eijkerst, which we recognize as the delta symbol δijkrst\delta_{ijk}^{rst}δijkrst, is an absolute tensor. Of course, this was already demonstrated in Chapter 16 by other means.

Having establishing the (relative) tensor property of the permutation systems, we find ourselves halfway towards doing the same for the Levi-Civita symbols. In order to complete this task, we must investigate the tensor property of the volume element Z\sqrt{Z}Z and will therefore turn our attention now to determinants.

17.3.2The relative tensor property of determinants

Suppose that AijA_{ij}Aij is an absolute covariant tensor. Recall that its determinant is given by the formula

detA=13!eijkerstAirAjsAkt.(16.119)\det A=\frac{1}{3!}e^{ijk}e^{rst}A_{ir}A_{js}A_{kt}. \tag{16.119}detA=3!1eijkerstAirAjsAkt.(16.119)

Then, by the multiplicative property of relative tensors stated in the previous Section (and demonstrated in Exercise 17.2), detA\det AdetA is a relative invariant of weight 222. Meanwhile, the determinant of an absolute tensor AijA^{ij}Aij, which is given by

detA=13!eijkerstAirAjsAkt,(16.121)\det A=\frac{1}{3!}e_{ijk}e_{rst}A^{ir}A^{js}A^{kt}, \tag{16.121}detA=3!1eijkerstAirAjsAkt,(16.121)

is a relative invariant of weight 2-22. Finally, recall that, since the delta system δrstijk\delta_{rst}^{ijk}δrstijk is an absolute tensor, we concluded in Chapter 16 that the determinant of a mixed tensor AjiA_{j}^{i}Aji, i.e.

detA=13!δrstijkAirAjsAkt,(16.117)\det A=\frac{1}{3!}\delta_{rst}^{ijk}A_{i}^{r}A_{j}^{s}A_{k}^{t}, \tag{16.117}detA=3!1δrstijkAirAjsAkt,(16.117)

is also an absolute invariant.

17.3.3The relative tensor property of the volume element Z\sqrt{Z}Z

As soon as we calculated the volume element Z\sqrt{Z}Z in Cartesian and polar coordinates in Chapter 9, it became apparent that Z\sqrt{Z}Z is not an invariant. Indeed,

Z=1(9.59)\sqrt{Z}=1 \tag{9.59}Z=1(9.59)

in Cartesian coordinates, and

Z=r(9.60)\sqrt{Z}=r \tag{9.60}Z=r(9.60)

in polar coordinates. We will now be able to characterize this behavior in terms of the relative tensor property.

Based on the findings of the previous Section, the object ZZZ, being the determinant of the covariant metric tensor ZijZ_{ij}Zij, is a relative invariant of weight 222. In other words, if ZZ^{\prime}Z is the determinant of ZijZ_{i^{\prime}j^{\prime}}Zij in the primed coordinates, then ZZZ and ZZ^{\prime }Z are related by the equation

Z=det2JZ.(17.15)Z^{\prime}=\det{}^{2}J~Z.\tag{17.15}Z=det2JZ.(17.15)

As tempting as it may be to take the square roots and conclude that

Z=detJZ,(-)\sqrt{Z^{\prime}}=\det J~\sqrt{Z}, \tag{-}Z=detJZ,(-)

we must remember that the determinant of the Jacobian JJJ may very well be negative. Thus, the correct relationship is

Z=detJZ.(17.16)\sqrt{Z^{\prime}}=\left\vert \det J\right\vert \sqrt{Z}.\tag{17.16}Z=detJZ.(17.16)

Therefore, we are not able to conclude that the volume element Z\sqrt{Z}Z is a relative invariant of weight 111. In order to actually reach that conclusion, we must restrict our attention to coordinate changes for which detJ>0\det J\gt 0detJ>0 -- in other words, orientation-preserving coordinate transformations. Under this condition, the above identity does simplify to

Z=detJZ.(-)\sqrt{Z^{\prime}}=\det J~\sqrt{Z}. \tag{-}Z=detJZ.(-)

To use the terminology introduced in Section 14.15, Z\sqrt{Z}Z is a relative invariant of weight 111 only with respect to orientation-preserving coordinate transformations.

17.3.4Why Z\sqrt{Z}Z in the Levi-Civita symbols?

Recall that, much like the volume element Z\sqrt{Z}Z, the permutation symbol eijke^{ijk}eijk is also a relative tensor of weight 111. Thus, dividing eijke^{ijk}eijk by Z\sqrt{Z}Z yields an absolute tensor -- albeit, only with respect to orientation-preserving coordinate transformations. Meanwhile, eijke_{ijk}eijk is a relative tensor of weight 1-11. Thus, multiplying eijke_{ijk}eijk by Z\sqrt{Z}Z also yields an absolute tensor -- once again, only with respect to orientation-preserving coordinate changes. Of course, this is precisely how the Levi-Civita symbols are constructed, but you may ask -- why must we use Z\sqrt{Z}Z in order to balance the permutations systems and not another relative invariant of weight 111 that is not limited to orientation-preserving coordinate transformations?

Such an object proves difficult to come by. Indeed, suppose that UUU is, in fact, such an object, i.e. a relative invariant of weight 111 not subject to any qualifications. Since we have no further requirements of UUU, suppose that U1U\equiv1U1 in some Cartesian coordinate system ZiZ^{i}Zi. Then the values of UUU are uniquely determined in all coordinate systems. Indeed, in any alternative coordinate system ZiZ^{i^{\prime}}Zi, UU^{\prime}U is given by the equation

U=detJU,(17.17)U^{\prime}=\det J~U,\tag{17.17}U=detJU,(17.17)

where JJJ is the Jacobian of the coordinate transformation between ZiZ^{i}Zi and ZiZ^{i^{\prime}}Zi. Since UUU and Z\sqrt{Z}Z coincide in the Cartesian coordinates ZiZ^{i}Zi and transform by the similar rules

U=detJUandZ=detJZ,(17.18)U^{\prime}=\det J~U\text{ \ \ \ \ and \ \ \ \ }\sqrt{Z^{\prime}}=\left\vert \det J\right\vert \sqrt{Z},\tag{17.18}U=detJUandZ=detJZ,(17.18)

we conclude that UUU agrees with Z\sqrt{Z}Z to within sign in all coordinates systems.

Does the resulting object UUU offer a better alternative to Z\sqrt{Z}Z? It has one indisputable advantage over Z\sqrt{Z}Z: it is an unqualified relative invariant of weight 111. However, since the construction of UUU requires us to a single out one coordinate system -- i.e. the Cartesian coordinates of a particular orientation where U=1U=1U=1 -- it is a tensor of the synthetic variety, as described in Section 14.13, and, as such, its uses are significantly limited. Thus, on balance, the volume element Z\sqrt{Z}Z is the superior choice.

17.4The tensor property of the Levi-Civita symbols

Recall that the general nnn-dimensional definition reads

εi1in=Zei1inand(17.1)εi1in=ei1inZ.(17.2)\begin{aligned}\varepsilon_{i_{1}\cdots i_{n}} & =\sqrt{Z}e_{i_{1}\cdots i_{n}}\text{ and}\ \ \ \ \ \ \ \ \ \ \left(17.1\right)\\\varepsilon^{i_{1}\cdots i_{n}} & =\frac{e^{i_{1}\cdots i_{n}}}{\sqrt{Z}}. \ \ \ \ \ \ \ \ \ \ \left(17.2\right)\end{aligned}εi1inεi1in=Zei1inand(17.1)=Zei1in.(17.2)

By construction, the Levi-Civita symbols are absolute tensors with respect to orientation-preserving coordinate transformations. They are often thought of as members of the metrics family, alongside the covariant and the contravariant bases Zi\mathbf{Z}_{i}Zi and Zi\mathbf{Z}^{i}Zi, the metric tensors ZijZ_{ij}Zij and ZijZ^{ij}Zij, and the volume element Z\sqrt{Z}Z.

Note that the complete delta system δj1jni1in\delta_{j_{1}\cdots j_{n}}^{i_{1}\cdots i_{n}}δj1jni1in defined by the identity

δj1jni1in=ei1inej1jn.(16.37)\delta_{j_{1}\cdots j_{n}}^{i_{1}\cdots i_{n}}=e^{i_{1}\cdots i_{n}} e_{j_{1}\cdots j_{n}}. \tag{16.37}δj1jni1in=ei1inej1jn.(16.37)

can be similarly expressed in terms of the Levi-Civita symbols, i.e.

δj1jni1in=εi1inεj1jn.(17.19)\delta_{j_{1}\cdots j_{n}}^{i_{1}\cdots i_{n}}=\varepsilon^{i_{1}\cdots i_{n} }\varepsilon_{j_{1}\cdots j_{n}}.\tag{17.19}δj1jni1in=εi1inεj1jn.(17.19)

The appeal of this identity, compared to the original definition of δj1jni1in\delta_{j_{1}\cdots j_{n}}^{i_{1}\cdots i_{n}}δj1jni1in in terms of the permutation systems, is that all of its constituent elements are tensors. However, while the Levi-Civita symbols are relative tensors only with respect to orientation-preserving coordinate changes, the delta system is an unqualified absolute tensor.

17.5The combination AriAsj−ArjAsiA_{r}^{i}A_{s}^{j}-A_{r}^{j}A_{s}^{i}Ari​Asj​−Arj​Asi​ in two dimensions revisited

For a second-order system AjiA_{j}^{i}Aji in two dimensions, recall the identity

AriAsjArjAsi=detAδrsij(16.149)A_{r}^{i}A_{s}^{j}-A_{r}^{j}A_{s}^{i}=\det A~\delta_{rs}^{ij} \tag{16.149}AriAsjArjAsi=detAδrsij(16.149)

derived in Section 16.10, where detA\det AdetA denotes the determinant of AjiA_{j}^{i}Aji. Importantly, if AjiA_{j}^{i}Aji is a tensor, then all elements in this identity, including detA\det AdetA, are tensors. The same cannot be said, however, for a covariant tensor AijA_{ij}Aij which satisfies the identity

AirAjsAisAjr=detAeijers,(16.152)A_{ir}A_{js}-A_{is}A_{jr}=\det A~e_{ij}e_{rs}, \tag{16.152}AirAjsAisAjr=detAeijers,(16.152)

where detA\det AdetA denotes the determinant of AijA_{ij}Aij, or for a contravariant tensor AijA^{ij}Aij which satisfies the identity

AirAjsAisAjr=detAeijers,(16.153)A^{ir}A^{js}-A^{is}A^{jr}=\det A~e^{ij}e^{rs}, \tag{16.153}AirAjsAisAjr=detAeijers,(16.153)

where detA\det AdetA denotes the determinant of AijA^{ij}Aij. Thus, the symbol AAA denotes three different objects in the three preceding identities. We will now show that, with the help of the Levi-Civita symbols, these identities can be fully tensorized while the symbol AAA can be assigned a unique meaning.

Let us focus our attention on the identity

AirAjsAisAjr=detAeijers(16.152)A_{ir}A_{js}-A_{is}A_{jr}=\det A~e_{ij}e_{rs} \tag{16.152}AirAjsAisAjr=detAeijers(16.152)

for a covariant tensor AijA_{ij}Aij where, once again, detA\det AdetA denotes its determinant. Since the permutation system eije_{ij}eij is expressed in terms of the Levi-Civita symbol εij\varepsilon_{ij}εij by the equation

eij=εijZ,(17.20)e_{ij}=\frac{\varepsilon_{ij}}{\sqrt{Z}},\tag{17.20}eij=Zεij,(17.20)

we find that

AirAjsAisAjr=detAZεijεrs.(16.152)A_{ir}A_{js}-A_{is}A_{jr}=\frac{\det A}{Z}\varepsilon_{ij}\varepsilon_{rs}. \tag{16.152}AirAjsAisAjr=ZdetAεijεrs.(16.152)

Since AirAjsAisAjrA_{ir}A_{js}-A_{is}A_{jr}AirAjsAisAjr, εij\varepsilon_{ij}εij, and εrs\varepsilon_{rs}εrs are tensors, the quantity

detAZ(17.21)\frac{\det A}{Z}\tag{17.21}ZdetA(17.21)

is also a tensor by the quotient theorem described in Section 14.14. It is, in fact, the determinant of another tensor closely related to AijA_{ij}Aij. Since 1/Z1/Z1/Z is the determinant of the contravariant metric tensor ZijZ^{ij}Zij, then det(A)/Z\det\left( A\right) /Zdet(A)/Z is the determinant of AirZijA_{ir}Z^{ij}AirZij by the multiplicative property of determinants. In other words, det(A)/Z\det\left( A\right) /Zdet(A)/Z is the determinant of AjiA_{\cdot j}^{i}Aji.

In light of this insight, let us agree to denote by the symbol AAA the determinant of AjiA_{\cdot j}^{i}Aji, regardless of whether the context is concerned with AijA_{ij}Aij, AjiA_{j}^{i}Aji, or AijA^{ij}Aij. With the help of this convention, the three identities at the center of this Section can be written as

AirAjsAisAjr=Aεijεrs(17.22)AriAsjArjAsi=Aδrsij(16.149)AirAjsAisAjr=Aεijεrs.(17.23)\begin{aligned}A_{ir}A_{js}-A_{is}A_{jr} & =A~\varepsilon_{ij}\varepsilon_{rs}\ \ \ \ \ \ \ \ \ \ \left(17.22\right)\\A_{r}^{i}A_{s}^{j}-A_{r}^{j}A_{s}^{i} & =A~\delta_{rs}^{ij}\ \ \ \ \ \ \ \ \ \ \left(16.149\right)\\A^{ir}A^{js}-A^{is}A^{jr} & =A~\varepsilon^{ij}\varepsilon^{rs}.\ \ \ \ \ \ \ \ \ \ \left(17.23\right)\end{aligned}AirAjsAisAjrAriAsjArjAsiAirAjsAisAjr=Aεijεrs(17.22)=Aδrsij(16.149)=Aεijεrs.(17.23)

This convention makes logical sense from the Tensor Calculus point of view. If we were to associate a determinant-like invariant with a covariant tensor AijA_{ij}Aij or contravariant tensor AijA^{ij}Aij, it would need to be the determinant of AjiA_{\cdot j}^{i}Aji since, among the three determinants, it is the only one that is an invariant.

Note that an interesting special case of the above formulas is found when AijA_{ij}Aij is the metric tensor ZijZ_{ij}Zij. Then AjiA_{\cdot j}^{i}Aji is the Kronecker delta δji\delta_{j}^{i}δji and therefore A=1A=1A=1. Thus we have

ZirZjsZisZjr=εijεrs(17.24)δriδsjδrjδsi=δrsij(17.25)ZirZjsZisZjr=εijεrs(17.26)\begin{aligned}Z_{ir}Z_{js}-Z_{is}Z_{jr} & =\varepsilon_{ij}\varepsilon_{rs}\ \ \ \ \ \ \ \ \ \ \left(17.24\right)\\\delta_{r}^{i}\delta_{s}^{j}-\delta_{r}^{j}\delta_{s}^{i} & =\delta _{rs}^{ij}\ \ \ \ \ \ \ \ \ \ \left(17.25\right)\\Z^{ir}Z^{js}-Z^{is}Z^{jr} & =\varepsilon^{ij}\varepsilon^{rs}\ \ \ \ \ \ \ \ \ \ \left(17.26\right)\end{aligned}ZirZjsZisZjrδriδsjδrjδsiZirZjsZisZjr=εijεrs(17.24)=δrsij(17.25)=εijεrs(17.26)

where we note that the middle equation is precisely the identity

δrsij=δriδsjδrjδsi(16.58)\delta_{rs}^{ij}=\delta_{r}^{i}\delta_{s}^{j}-\delta_{r}^{j}\delta_{s}^{i} \tag{16.58}δrsij=δriδsjδrjδsi(16.58)

discovered in the previous Chapter.

Finally, note that one of the most striking applications of the formulas discussed in this Section will be found in a future book in the context of the Gauss equations for two-dimensional surfaces.

17.6The metrinilic property of the covariant derivative with respect to the Levi-Civita symbols

In this Section, we will show that the metrinilic property of the covariant derivative extends to the Levi-Civita symbols. In the context of a Euclidean space, which, as we know, is characterized by the availability of Cartesian coordinates, the metrinilic property with respect to the Levi-Civita symbols is rather easily established by considering the combinations

pεijkandpεijk(17.27)\nabla_{p}\varepsilon_{ijk}\text{\ \ \ \ and\ \ \ \ }\nabla_{p}\varepsilon ^{ijk}\tag{17.27}pεijkandpεijk(17.27)

in any Cartesian coordinates, where the Levi-Civita symbols εijk\varepsilon _{ijk}εijk and εijk\varepsilon^{ijk}εijk have constant values, while the covariant derivative coincides with the partial derivative. Therefore, the combinations pεijk\nabla_{p}\varepsilon_{ijk}pεijk and pεijk\nabla_{p}\varepsilon^{ijk}pεijk vanish, i.e.

pεijk=0(17.28)pεijk=0.(17.29)\begin{aligned}\nabla_{p}\varepsilon_{ijk} & =0\ \ \ \ \ \ \ \ \ \ \left(17.28\right)\\\nabla_{p}\varepsilon^{ijk} & =0.\ \ \ \ \ \ \ \ \ \ \left(17.29\right)\end{aligned}pεijkpεijk=0(17.28)=0.(17.29)

Meanwhile, since the Levi-Civita symbols are tensors, vanishing in one coordinate system implies vanishing in all coordinate systems, as we set out to show. The fact the εijk\varepsilon_{ijk}εijk is a tensor only with respect to orientation-preserving coordinate transformations has no effect on this argument.

However, we would also like to provide another argument that does not rely on the Euclidean nature of the space, so that we are later able to extend the result to Riemannian spaces. Therefore, we will give an alternative demonstration based on a direct application of the definition of the covariant derivative to the Levi-Civita symbol.

Denote by TpijkT_{pijk}Tpijk the covariant derivative of the permutation system eijke_{ijk}eijk, i.e.

Tpijk=peijk=eijkZpΓpimemjkΓpjmeimkΓpkmeijm.(17.30)T_{pijk}=\nabla_{p}e_{ijk}=\frac{\partial e_{ijk}}{\partial Z^{p}}-\Gamma _{pi}^{m}e_{mjk}-\Gamma_{pj}^{m}e_{imk}-\Gamma_{pk}^{m}e_{ijm}.\tag{17.30}Tpijk=peijk=ZpeijkΓpimemjkΓpjmeimkΓpkmeijm.(17.30)

Since the permutation systems have constant values and therefore the partial derivative eijk/Zp\partial e_{ijk}/\partial Z^{p}eijk/Zp vanishes, we have

Tpijk=ΓpimemjkΓpjmeimkΓpkmeijm.(17.31)T_{pijk}=-\Gamma_{pi}^{m}e_{mjk}-\Gamma_{pj}^{m}e_{imk}-\Gamma_{pk}^{m} e_{ijm}.\tag{17.31}Tpijk=ΓpimemjkΓpjmeimkΓpkmeijm.(17.31)

Observe that TpijkT_{pijk}Tpijk is skew-symmetric in the indices iii, jjj, and kkk. Therefore, we need only to consider the elements Tp123T_{p123}Tp123 given by

Tp123=Γp1mem23Γp2me1m3Γp3me12m.(17.32)T_{p123}=-\Gamma_{p1}^{m}e_{m23}-\Gamma_{p2}^{m}e_{1m3}-\Gamma_{p3}^{m} e_{12m}.\tag{17.32}Tp123=Γp1mem23Γp2me1m3Γp3me12m.(17.32)

In each contraction on the right, there is only one nonzero term that corresponds to m=1m=1m=1 in the first contraction, m=2m=2m=2 in the second, and m=3m=3m=3 in the third, i.e.

Tp123=Γp11e123Γp22e123Γp33e123.(17.33)T_{p123}=-\Gamma_{p1}^{1}e_{123}-\Gamma_{p2}^{2}e_{123}-\Gamma_{p3}^{3} e_{123}.\tag{17.33}Tp123=Γp11e123Γp22e123Γp33e123.(17.33)

Factoring out e123-e_{123}e123, we find

Tp123=(Γp11+Γp22+Γp33)e123.(17.34)T_{p123}=-\left( \Gamma_{p1}^{1}+\Gamma_{p2}^{2}+\Gamma_{p3}^{3}\right) e_{123}.\tag{17.34}Tp123=(Γp11+Γp22+Γp33)e123.(17.34)

In other words,

Tp123=Γpmme123.(17.35)T_{p123}=-\Gamma_{pm}^{m}e_{123}.\tag{17.35}Tp123=Γpmme123.(17.35)

Thus, in general,

peijk=Γpmmeijk.(17.36)\nabla_{p}e_{ijk}=-\Gamma_{pm}^{m}e_{ijk}.\tag{17.36}peijk=Γpmmeijk.(17.36)

Since the Christoffel symbol is symmetric in its subscripts and therefore

Γpmm=Γmpm,(17.37)\Gamma_{pm}^{m}=\Gamma_{mp}^{m},\tag{17.37}Γpmm=Γmpm,(17.37)

we arrive at the following identity for the covariant derivative of the permutation systems:

peijk=Γmpmeijk.(17.38)\nabla_{p}e_{ijk}=-\Gamma_{mp}^{m}e_{ijk}.\tag{17.38}peijk=Γmpmeijk.(17.38)

Note that we encountered the combination Γmpm\Gamma_{mp}^{m}Γmpm at the end of the last Chapter where we derived the identity

ZZp=ZΓmpm.(16.181)\frac{\partial\sqrt{Z}}{\partial Z^{p}}=\sqrt{Z}\Gamma_{mp}^{m}. \tag{16.181}ZpZ=ZΓmpm.(16.181)

This identity is about to play a pivotal role in our calculation as we analyzed the covariant derivative of the Levi-Civita symbols.

By the product rule, for the covariant derivative of the Levi-Civita symbol εijk\varepsilon_{ijk}εijk, we have

pεijk=p(Zeijk)=pZeijk+Zpeijk.(17.39)\nabla_{p}\varepsilon_{ijk}=\nabla_{p}\left( \sqrt{Z}e_{ijk}\right) =\nabla_{p}\sqrt{Z}~e_{ijk}+\sqrt{Z}\nabla_{p}e_{ijk}.\tag{17.39}pεijk=p(Zeijk)=pZeijk+Zpeijk.(17.39)

Since

pZ=ZZp=ZΓmpm(16.181)\nabla_{p}\sqrt{Z}=\frac{\partial\sqrt{Z}}{\partial Z^{p}}=\sqrt{Z}\Gamma _{mp}^{m} \tag{16.181}pZ=ZpZ=ZΓmpm(16.181)

and, as we just discovered,

peijk=Γmpmeijk.(17.38)\nabla_{p}e_{ijk}=-\Gamma_{mp}^{m}e_{ijk}. \tag{17.38}peijk=Γmpmeijk.(17.38)

we find

pεijk=ZΓmpmeijkZΓmpmeijk=0(17.40)\nabla_{p}\varepsilon_{ijk}=\sqrt{Z}\Gamma_{mp}^{m}e_{ijk}-\sqrt{Z}\Gamma _{mp}^{m}e_{ijk}=0\tag{17.40}pεijk=ZΓmpmeijkZΓmpmeijk=0(17.40)

as we set out to show.

In summary, the Levi-Civita symbols εijk\varepsilon_{ijk}εijk and εijk\varepsilon ^{ijk}εijk are subject to the metrinilic property of the covariant derivative along with its fellow metrics the coordinate bases Zi\mathbf{Z}_{i}Zi and Zi\mathbf{Z}^{i}Zi and the metric tensors ZijZ_{ij}Zij and ZijZ^{ij}Zij.

17.7The Levi-Civita symbols under index juggling

Since we introduced the symbols εijk\varepsilon_{ijk}εijk and εijk\varepsilon^{ijk}εijk independently in a context that allows index juggling, each symbol εijk\varepsilon^{ijk}εijk is potentially ambiguous. Indeed, does the symbol, say, εijk\varepsilon^{ijk}εijk represent the contravariant Levi-Civita symbol εijk\varepsilon^{ijk}εijk, as we defined it, or the covariant Levi-Civita symbol εijk\varepsilon_{ijk}εijk with each of the indices raised, i.e. the combination εrstZirZjsZkt\varepsilon_{rst}Z^{ir}Z^{js}Z^{kt}εrstZirZjsZkt?

Fortunately, the two interpretations are equivalent and we, indeed, have

εijk=εrstZirZjsZkt.(17.41)\varepsilon^{ijk}=\varepsilon_{rst}Z^{ir}Z^{js}Z^{kt}.\tag{17.41}εijk=εrstZirZjsZkt.(17.41)

In other words, the Levi-Civita symbols εijk\varepsilon_{ijk}εijk and εijk\varepsilon ^{ijk}εijk, as defined independently of each other, are, in fact, related by index juggling. Had this not been the case, this ambiguity would have continually required special attention when the Levi-Civita symbols and index juggling were present in the same analysis.

To show that the above relationship holds, recall that

εrst=Zerst.(16.28)\varepsilon_{rst}=\sqrt{Z}e_{rst}. \tag{16.28}εrst=Zerst.(16.28)

Thus, the combination εrstZirZjsZkt\varepsilon_{rst}Z^{ir}Z^{js}Z^{kt}εrstZirZjsZkt is given by

εrstZirZjsZkt=ZerstZirZjsZkt.(17.42)\varepsilon_{rst}Z^{ir}Z^{js}Z^{kt}=\sqrt{Z}e_{rst}Z^{ir}Z^{js}Z^{kt}.\tag{17.42}εrstZirZjsZkt=ZerstZirZjsZkt.(17.42)

Recall once again that

erstAirAjsAkt=detAeijk,(16.120)e_{rst}A^{ir}A^{js}A^{kt}=\det A~e^{ijk}, \tag{16.120}erstAirAjsAkt=detAeijk,(16.120)

where detA\det AdetA is the determinant of AijA^{ij}Aij. This identity implies that

erstZirZjsZkt=Z1eijk(17.43)e_{rst}Z^{ir}Z^{js}Z^{kt}=Z^{-1}e^{ijk}\tag{17.43}erstZirZjsZkt=Z1eijk(17.43)

since the determinant of the contravariant metric tensor ZijZ^{ij}Zij is 1/Z1/Z1/Z. Thus,

εrstZirZjsZkt=ZerstZirZjsZkt=ZZ1eijk=1Zeijk.(17.44)\varepsilon_{rst}Z^{ir}Z^{js}Z^{kt}=\sqrt{Z}e_{rst}Z^{ir}Z^{js}Z^{kt}=\sqrt {Z}Z^{-1}e^{ijk}=\frac{1}{\sqrt{Z}}e^{ijk}.\tag{17.44}εrstZirZjsZkt=ZerstZirZjsZkt=ZZ1eijk=Z1eijk.(17.44)

Finally, since

εijk=eijkZ,(17.4)\varepsilon^{ijk}=\frac{e^{ijk}}{\sqrt{Z}}, \tag{17.4}εijk=Zeijk,(17.4)

we arrive at the identity

εrstZirZjsZkt=εijk,(17.41)\varepsilon_{rst}Z^{ir}Z^{js}Z^{kt}=\varepsilon^{ijk}, \tag{17.41}εrstZirZjsZkt=εijk,(17.41)

as we set out to show.

Importantly, unlike the Levi-Civita symbols, the permutation symbols eijke_{ijk}eijk and eijke^{ijk}eijk do suffer from the ambiguity related to index juggling, as eijke^{ijk}eijk does not equal eijke_{ijk}eijk with raised indices. Indeed, as we just saw

erstZirZjsZkt=Z1eijk,(17.43)e_{rst}Z^{ir}Z^{js}Z^{kt}=Z^{-1}e^{ijk}, \tag{17.43}erstZirZjsZkt=Z1eijk,(17.43)

and therefore,

erstZirZjsZkteijk.(17.45)e_{rst}Z^{ir}Z^{js}Z^{kt}\neq e^{ijk}.\tag{17.45}erstZirZjsZkt=eijk.(17.45)

We must acknowledge that this is a flaw in our notational system. However, one can live with this flaw since the need for juggling the indices of a permutation system almost never arises.

17.8The cross product revisited

17.8.1A brief review of the cross product

The tensor property of the Levi-Civita symbols opens the door to the coordinate space expression for the cross product. However, let us begin by reviewing the geometric definition of the cross product given in Chapter 3.

17. The Levi-Civita Symbol and the Cross Product (1)(3.29)

In three dimensions, consider a pair of linearly independent vectors U\mathbf{U}U and V\mathbf{V}V that form an angle γ\gammaγ. Then their cross product W\mathbf{W}W, denoted by U×V\mathbf{U}\times\mathbf{V}U×V, is determined by the following three conditions. First, W\mathbf{W}W is orthogonal to both U\mathbf{U}U and V\mathbf{V}V -- in other words, W\mathbf{W}W lies along the unique straight line orthogonal to the plane spanned by U\mathbf{U}U and V\mathbf{V}V. Second, the length of W\mathbf{W}W is the product of the length of U\mathbf{U}U, the length of V\mathbf{V}V, and the sine of the angle γ\gammaγ, i.e.

lenW=lenUlenVsinγ.(3.28)\operatorname{len}\mathbf{W}=\operatorname{len}\mathbf{U}\operatorname{len} \mathbf{V}\sin\gamma. \tag{3.28}lenW=lenUlenVsinγ.(3.28)

Finally, between the two opposite vectors that satisfy the first two conditions, W\mathbf{W}W is selected in such a way that the set U\mathbf{U}U, V\mathbf{V}V, W\mathbf{W}W is positively oriented.

The third condition implies that the cross product is anti-symmetric, i.e.

U×V=V×U,(3.30)\mathbf{U}\times\mathbf{V}=-\mathbf{V}\times\mathbf{U,} \tag{3.30}U×V=V×U,(3.30)

which tips us off to the connection between the cross product and skew-symmetric systems. From the anti-symmetric property, it also follows that the cross product of a vector with itself is zero, i.e.

U×U=0.(3.31)\mathbf{U}\times\mathbf{U}=\mathbf{0}. \tag{3.31}U×U=0.(3.31)

Indeed, U×U=U×U\mathbf{U}\times\mathbf{U}=-\mathbf{U}\times\mathbf{U}U×U=U×U and must therefore be 0\mathbf{0}0.

In Chapter 3, we demonstrated that the cross product satisfies the associative law

α(U×V)=(αU)×V(3.33)\alpha\left( \mathbf{U}\times\mathbf{V}\right) =\left( \alpha \mathbf{U}\right) \times\mathbf{V} \tag{3.33}α(U×V)=(αU)×V(3.33)

and the distributive law

U×(V1+V2)=U×V1+U×V2,(3.34)\mathbf{U}\times\left( \mathbf{V}_{1}+\mathbf{V}_{2}\right) =\mathbf{U} \times\mathbf{V}_{1}+\mathbf{U}\times\mathbf{V}_{2}\mathbf{,} \tag{3.34}U×(V1+V2)=U×V1+U×V2,(3.34)

but lacks associativity, i.e.

U×(V×W)(U×V)×W.(3.32)\mathbf{U}\times\left( \mathbf{V}\times\mathbf{W}\right) \neq\left( \mathbf{U}\times\mathbf{V}\right) \times\mathbf{W.} \tag{3.32}U×(V×W)=(U×V)×W.(3.32)

Indeed, the vector on the left is orthogonal to U\mathbf{U}U while the vector on the right is not necessarily so. However, the product U×(V×W)\mathbf{U} \times\left( \mathbf{V}\times\mathbf{W}\right) U×(V×W) satisfies the identity

U×(V×W)=(UW)V(UV)W(17.72)\mathbf{U}\times\left( \mathbf{V}\times\mathbf{W}\right) =\left( \mathbf{U}\cdot\mathbf{W}\right) \mathbf{V}-\left( \mathbf{U}\cdot \mathbf{V}\right) \mathbf{W} \tag{17.72}U×(V×W)=(UW)V(UV)W(17.72)

which we will demonstrate below by working with the components of vectors. Meanwhile, note that it is not surprising that U×(V×W)\mathbf{U}\times\left( \mathbf{V}\times\mathbf{W}\right) U×(V×W) is a linear combination of V\mathbf{V}V and W\mathbf{W}W since, being orthogonal to V×W\mathbf{V}\times\mathbf{W}V×W, it must lie in the plane spanned by V\mathbf{V}V and W\mathbf{W}W.

17.8.2The cross product in two dimensions

In two dimensions, there exists an operation analogous to the cross product that, unlike the conventional three-dimensional cross product, applies to a single vector U\mathbf{U}U. Specifically, the "cross product" ×U\times \mathbf{U}×U of a vector U\mathbf{U}U is the vector V\mathbf{V}V obtained from U\mathbf{U}U by a counterclockwise 9090^{\circ}90 rotation.

17. The Levi-Civita Symbol and the Cross Product (2)(17.46)

Thus, the two-dimensional "cross product" is merely a synonym for a counterclockwise 9090^{\circ}90 rotation. Nevertheless, it is helpful to put this operation on an equal footing with the conventional cross product. Indeed, the close parallel is clear: the resulting vector V\mathbf{V}V is orthogonal to U\mathbf{U}U, has the same length as U\mathbf{U}U, while the set U\mathbf{U}U, V\mathbf{V}V is positively oriented. Furthermore, we will discover that the coordinate space representation of ×U\times\mathbf{U}×U can be given by a similar expression involving the two-dimensional Levi-Civita symbol εαβ\varepsilon_{\alpha\beta}εαβ.

17.8.3The coordinate space representation of the cross product

Let us now turn our attention to the coordinate space representation of the cross product. There exists a fundamental connection between skew-symmetry (an algebraic concept) and orthogonality (a geometric concept). For example, note that two Cartesian vectors (a,b)\left( a,b\right) (a,b) and (b,a)\left( b,-a\right) (b,a) are orthogonal. In other words, in order to find a vector orthogonal to (a,b)\left( a,b\right) (a,b), we must switch the components and multiply one of them by 1-11. This operation is equivalent to multiplication by the skew-symmetric matrix

[0110](17.47)\left[ \begin{array} {rr} 0 & 1\\ -1 & 0 \end{array} \right]\tag{17.47}[0110](17.47)

which, as we know, is a representation of the two-dimensional permutation system eije_{ij}eij.

With the help of the Levi-Civita symbol, the idea of orthogonality-by-skew-symmetry generalizes to any dimension. For an example in three dimensions, suppose that UiU^{i}Ui are the components of a vector U\mathbf{U}U. Note that

εijkUiUj=0(17.48)\varepsilon_{ijk}U^{i}U^{j}=0\tag{17.48}εijkUiUj=0(17.48)

since a double contraction of a skew-symmetric system, εijk\varepsilon_{ijk}εijk, with a symmetric system, UiUjU^{i}U^{j}UiUj, is zero. In a manner of speaking, "dot product" of εijkUi\varepsilon_{ijk}U^{i}εijkUi and UjU^{j}Uj is zero. Thus, the combination εijkUi\varepsilon_{ijk}U^{i}εijkUi -- no matter how the free index kkk is eventually engaged -- produces an object "orthogonal" to UjU^{j}Uj. Similarly, in nnn dimensions, the object εi1inUi1\varepsilon_{i_{1}\cdots i_{n}}U^{i_{1}}εi1inUi1 is "orthogonal" to Ui2U^{i_{2}}Ui2 no matter how the remaining indices i3,,ini_{3} ,\cdots,i_{n}i3,,in are engaged.

Let us now return to three dimensions and exploit this idea by considering the vector W\mathbf{W}W with components

Wk=εijkUiVj.(17.49)W_{k}=\varepsilon_{ijk}U^{i}V^{j}.\tag{17.49}Wk=εijkUiVj.(17.49)

In other words,

W=εijkUiVjZk.(17.50)\mathbf{W}=\varepsilon_{ijk}U^{i}V^{j}\mathbf{Z}^{k}.\tag{17.50}W=εijkUiVjZk.(17.50)

Note that since εijk=Zeijk\varepsilon_{ijk}=\sqrt{Z}e_{ijk}εijk=Zeijk, the expression on the right

W=εijkUiVjZk(17.50)\mathbf{W}=\varepsilon_{ijk}U^{i}V^{j}\mathbf{Z}^{k}\tag{17.50}W=εijkUiVjZk(17.50)

can be elegantly captured by the formula

W=ZZ1Z2Z3U1U2U3V1V2V3(17.51)\mathbf{W}=\sqrt{Z}\left\vert \begin{array} {ccc} \mathbf{Z}^{1} & \mathbf{Z}^{2} & \mathbf{Z}^{3}\\ U^{1} & U^{2} & U^{3}\\ V^{1} & V^{2} & V^{3} \end{array} \right\vert\tag{17.51}W=ZZ1U1V1Z2U2V2Z3U3V3(17.51)

which provides a practical recipe for evaluating W\mathbf{W}W.

By design, W\mathbf{W}W is orthogonal to both U\mathbf{U}U and V\mathbf{V}V. For a formal confirmation, note that

WU=WkUk=εijkUiVjUk=0(17.52)\mathbf{W}\cdot\mathbf{U}=W_{k}U^{k}=\varepsilon_{ijk}U^{i}V^{j}U^{k}=0\tag{17.52}WU=WkUk=εijkUiVjUk=0(17.52)

and

WV=WkVk=εijkUiVjVk=0(17.53)\mathbf{W}\cdot\mathbf{V}=W_{k}V^{k}=\varepsilon_{ijk}U^{i}V^{j}V^{k}=0\tag{17.53}WV=WkVk=εijkUiVjVk=0(17.53)

by the fact that a double-contraction of a skew-symmetric system and a symmetric system vanishes, whereas UiUkU^{i}U^{k}UiUk is a symmetric system in the first equation while VjVkV^{j}V^{k}VjVk is a symmetric system in the second. Thus, in one fell swoop, the skew-symmetry of the Levi-Civita symbol delivered a vector that satisfies the orthogonality requirement in the definition of the cross product.

Importantly, we should not lose sight of the fact that the tensor property of the Levi-Civita symbol was critical to our construction. Had the Levi-Civita symbol not been a tensor, our entire effort would have stopped dead in its tracks since we would have failed to produce an invariant, and therefore geometrically meaningful, expression. We should, however, reiterate the caveat that the Levi-Civita symbol is a tensor only with respect to orientation-preserving coordinate transformations. This issue will be addressed at the end of this Section.

Let us now turn our attention to the length of W\mathbf{W}W and confirm that, in fact,

lenW=lenUlenVsinγ.(3.28)\operatorname{len}\mathbf{W}=\operatorname{len}\mathbf{U}\operatorname{len} \mathbf{V}\sin\gamma. \tag{3.28}lenW=lenUlenVsinγ.(3.28)

To show this, recall that the length of W\mathbf{W}W is given by the equation

len2W=WkWk.(17.54)\operatorname{len}^{2}\mathbf{W}=W_{k}W^{k}.\tag{17.54}len2W=WkWk.(17.54)

In order to obtain WkW^{k}Wk, raise the subscript kkk in the identity

Wk=εijkUiVj(17.49)W_{k}=\varepsilon_{ijk}U^{i}V^{j} \tag{17.49}Wk=εijkUiVj(17.49)

and introduce new letters rrr and sss for the dummy indices in anticipation of the upcoming contraction, i.e.

Wk=εrskUrVs(17.55)W^{k}=\varepsilon_{rs}^{\cdot\cdot k}U^{r}V^{s}\tag{17.55}Wk=εrs⋅⋅kUrVs(17.55)

or, equivalently,

Wk=εrskUrVs(17.56)W^{k}=\varepsilon^{rsk}U_{r}V_{s}\tag{17.56}Wk=εrskUrVs(17.56)

Combining the expressions for WkW_{k}Wk and WkW^{k}Wk, we have

WkWk=εijkUiVjεrskUrVs.(17.57)W_{k}W^{k}=\varepsilon_{ijk}U^{i}V^{j}\varepsilon^{rsk}U_{r}V_{s}.\tag{17.57}WkWk=εijkUiVjεrskUrVs.(17.57)

Since

εijkεrsk=δijkrsk(17.19)\varepsilon_{ijk}\varepsilon^{rsk}=\delta_{ijk}^{rsk} \tag{17.19}εijkεrsk=δijkrsk(17.19)

and

δijkrsk=δijrs=δirδjsδisδjr,(16.59)\delta_{ijk}^{rsk}=\delta_{ij}^{rs}=\delta_{i}^{r}\delta_{j}^{s}-\delta _{i}^{s}\delta_{j}^{r}, \tag{16.59}δijkrsk=δijrs=δirδjsδisδjr,(16.59)

we find that

εijkεrsk=δijkrsk=δijrs=δirδjsδisδjr.(17.58)\varepsilon_{ijk}\varepsilon^{rsk}=\delta_{ijk}^{rsk}=\delta_{ij}^{rs} =\delta_{i}^{r}\delta_{j}^{s}-\delta_{i}^{s}\delta_{j}^{r}.\tag{17.58}εijkεrsk=δijkrsk=δijrs=δirδjsδisδjr.(17.58)

Substituting this relationship into the equation

WkWk=εijkUiVjεrskUrVs,(17.57)W_{k}W^{k}=\varepsilon_{ijk}U^{i}V^{j}\varepsilon^{rsk}U_{r}V_{s}, \tag{17.57}WkWk=εijkUiVjεrskUrVs,(17.57)

we are able to eliminate the Levi-Civita symbols, i.e.

WkWk=(δirδjsδisδjr)UiVjUrVs.(17.59)W_{k}W^{k}=\left( \delta_{i}^{r}\delta_{j}^{s}-\delta_{i}^{s}\delta_{j} ^{r}\right) U^{i}V^{j}U_{r}V_{s}.\tag{17.59}WkWk=(δirδjsδisδjr)UiVjUrVs.(17.59)

Upon multiplying out and absorbing the Kronecker deltas, we arrive at the final expression for WkWkW_{k}W^{k}WkWk in terms of the components of U\mathbf{U}U and V\mathbf{V}V:

WkWk=UiVjUiVjUiVjUjVi.(17.60)W_{k}W^{k}=U^{i}V^{j}U_{i}V_{j}-U^{i}V^{j}U_{j}V_{i}.\tag{17.60}WkWk=UiVjUiVjUiVjUjVi.(17.60)

Let us give the geometric interpretation to each familiar combination in this identity. Namely,

WkWk=WW=len2W,(17.61)UiUi=UU=len2U,(17.62)VjVj=VV=len2V,and(17.63)UjVj=UiVi=UV=lenUlenVcosγ.(17.64)\begin{aligned}W_{k}W^{k} & =\mathbf{W}\cdot\mathbf{W}=\operatorname{len}^{2} \mathbf{W}\text{,}\ \ \ \ \ \ \ \ \ \ \left(17.61\right)\\U_{i}U^{i} & =\mathbf{U\cdot U}=\operatorname{len}^{2}\mathbf{U}\text{,}\ \ \ \ \ \ \ \ \ \ \left(17.62\right)\\V_{j}V^{j} & =\mathbf{V}\cdot\mathbf{V}=\operatorname{len}^{2} \mathbf{V}\text{, and}\ \ \ \ \ \ \ \ \ \ \left(17.63\right)\\U_{j}V^{j} & =U^{i}V_{i}=\mathbf{U}\cdot\mathbf{V}=\operatorname{len} \mathbf{U}\operatorname{len}\mathbf{V}\cos\gamma.\ \ \ \ \ \ \ \ \ \ \left(17.64\right)\end{aligned}WkWkUiUiVjVjUjVj=WW=len2W,(17.61)=UU=len2U,(17.62)=VV=len2V,and(17.63)=UiVi=UV=lenUlenVcosγ.(17.64)

Thus, in geometric terms, the preceding equation reads

len2W=len2Ulen2Vlen2Ulen2Vcos2γ,(17.65)\operatorname{len}^{2}\mathbf{W}=\operatorname{len}^{2}\mathbf{U} \operatorname{len}^{2}\mathbf{V}-\operatorname{len}^{2}\mathbf{U} \operatorname{len}^{2}\mathbf{V}\cos^{2}\gamma,\tag{17.65}len2W=len2Ulen2Vlen2Ulen2Vcos2γ,(17.65)

which, thanks to the trigonometric identity 1cos2γ=sin2γ1-\cos^{2}\gamma=\sin^{2}\gamma1cos2γ=sin2γ, reduces to

len2W=len2Ulen2Vsin2γ.(17.66)\operatorname{len}^{2}\mathbf{W}=\operatorname{len}^{2}\mathbf{U} \operatorname{len}^{2}\mathbf{V}\sin^{2}\gamma.\tag{17.66}len2W=len2Ulen2Vsin2γ.(17.66)

Taking the square root of both sides, we arrive at the desired equation

lenW=lenUlenVsinγ.(3.28)\operatorname{len}\mathbf{W}=\operatorname{len}\mathbf{U}\operatorname{len} \mathbf{V}\sin\gamma. \tag{3.28}lenW=lenUlenVsinγ.(3.28)

Thus, the length condition in the definition of the cross product is confirmed.

To test whether the orientation condition is satisfied, me must determine whether U\mathbf{U}U, V\mathbf{V}V, and W\mathbf{W}W form a positively oriented set. Recall from Chapter 16, that the sign of the combination eijkUiVjWke_{ijk}U^{i}V^{j}W^{k}eijkUiVjWk, and therefore that of εijkUiVjWk\varepsilon_{ijk}U^{i} V^{j}W^{k}εijkUiVjWk, tells us whether the orientation of U,V,W\mathbf{U},\mathbf{V} ,\mathbf{W}U,V,W is the same as that of the basis Zi\mathbf{Z}_{i}Zi. Since

εijkUiVjWk=WkWk>0,(17.67)\varepsilon_{ijk}U^{i}V^{j}W^{k}=W_{k}W^{k}\gt 0,\tag{17.67}εijkUiVjWk=WkWk>0,(17.67)

we conclude that the orientation U,V,W\mathbf{U},\mathbf{V},\mathbf{W}U,V,W is indeed the same as the orientation as the basis Zi\mathbf{Z}_{i}Zi. Thus, the combination

εijkUiVjZk(17.68)\varepsilon_{ijk}U^{i}V^{j}\mathbf{Z}^{k}\tag{17.68}εijkUiVjZk(17.68)

equals U×V\mathbf{U}\times\mathbf{V}U×V only when the coordinate system is positively oriented. In a negatively oriented coordinate system, we must reverse the sign, i.e.

W=εijkUiVjZk.(17.69)\mathbf{W}=-\varepsilon_{ijk}U^{i}V^{j}\mathbf{Z}^{k}.\tag{17.69}W=εijkUiVjZk.(17.69)

Of course, we should have a priori known that the equation

W=εijkUiVjZk(17.50)\mathbf{W}=\varepsilon_{ijk}U^{i}V^{j}\mathbf{Z}^{k} \tag{17.50}W=εijkUiVjZk(17.50)

contains an inconsistency, since W\mathbf{W}W is an invariant while εijkUiVjZk\varepsilon_{ijk}U^{i}V^{j}\mathbf{Z}^{k}εijkUiVjZk is an invariant only with respect to orientation-preserving coordinate systems due to the corresponding feature of the Levi-Civita symbol εijk\varepsilon_{ijk}εijk.

Finally, note that the coordinate space representation for the two-dimensional cross product V=×U\mathbf{V}=\times\mathbf{U}V=×U reads

V=εijUiZj(17.70)\mathbf{V}=\varepsilon_{ij}U^{i}\mathbf{Z}^{j}\tag{17.70}V=εijUiZj(17.70)

in right-handed coordinate systems and

V=εijUiZj(17.71)\mathbf{V}=-\varepsilon_{ij}U^{i}\mathbf{Z}^{j}\tag{17.71}V=εijUiZj(17.71)

in left-handed coordinate systems. Proving these identities is left as an exercise.

17.9Cross product identities

In this Section, we will demonstrate the formula

U×(V×W)=(UW)V(UV)W(17.72)\mathbf{U}\times\left( \mathbf{V}\times\mathbf{W}\right) =\left( \mathbf{U}\cdot\mathbf{W}\right) \mathbf{V}-\left( \mathbf{U}\cdot \mathbf{V}\right) \mathbf{W}\tag{17.72}U×(V×W)=(UW)V(UV)W(17.72)

which gives an expression for the double cross product U×(V×W)\mathbf{U} \times\left( \mathbf{V}\times\mathbf{W}\right) U×(V×W) in terms of the dot product and linear combinations. This demonstration, for which we will give full details, is an excellent exercise in the tensor technique. The derivations of other cross product identities, which use many of the same elements of the tensor technique, will be left for exercises.

Denote the cross product V×W\mathbf{V}\times\mathbf{W}V×W by S\mathbf{S}S, i.e.

Sk=εijkViWj.(17.73)S^{k}=\varepsilon^{ijk}V_{i}W_{j}.\tag{17.73}Sk=εijkViWj.(17.73)

Then the components of the cross product U×(V×W)\mathbf{U}\times\left( \mathbf{V}\times\mathbf{W}\right) U×(V×W), i.e. U×S\mathbf{U}\times\mathbf{S}U×S, are given by the question

εrstUrSs=εrstUrεijsViWj.(17.74)\varepsilon_{rst}U^{r}S^{s}=\varepsilon_{rst}U^{r}\varepsilon^{ijs}V_{i}W_{j}.\tag{17.74}εrstUrSs=εrstUrεijsViWj.(17.74)

Since

εrstεijs=δrstijs=δrtsijs=δrjδtiδriδtj,(17.75)\varepsilon_{rst}\varepsilon^{ijs}=\delta_{rst}^{ijs}=-\delta_{rts} ^{ijs}=\delta_{r}^{j}\delta_{t}^{i}-\delta_{r}^{i}\delta_{t}^{j},\tag{17.75}εrstεijs=δrstijs=δrtsijs=δrjδtiδriδtj,(17.75)

we have

εrstUrεijsViWj=(δrjδtiδriδtj)UrViWj=UrVtWrUrVrWt,(17.76)\varepsilon_{rst}U^{r}\varepsilon^{ijs}V_{i}W_{j}=\left( \delta_{r}^{j} \delta_{t}^{i}-\delta_{r}^{i}\delta_{t}^{j}\right) U^{r}V_{i}W_{j}=U^{r} V_{t}W_{r}-U^{r}V_{r}W_{t},\tag{17.76}εrstUrεijsViWj=(δrjδtiδriδtj)UrViWj=UrVtWrUrVrWt,(17.76)

which is the final expression for U×(V×W)\mathbf{U}\times\left( \mathbf{V} \times\mathbf{W}\right) U×(V×W) in terms of the components of the vectors U\mathbf{U}U, V\mathbf{V}V, and W\mathbf{W}W. In order to return to geometric quantities, note that UrWr=UWU^{r}W_{r}=\mathbf{U}\cdot\mathbf{W}UrWr=UW and UrVr=UVU^{r} V_{r}=\mathbf{U}\cdot\mathbf{V}UrVr=UV. Thus, we arrive at the equation

U×(V×W)=(UW)V(UV)W,(17.72)\mathbf{U}\times\left( \mathbf{V}\times\mathbf{W}\right) =\left( \mathbf{U}\cdot\mathbf{W}\right) \mathbf{V}-\left( \mathbf{U}\cdot \mathbf{V}\right) \mathbf{W,} \tag{17.72}U×(V×W)=(UW)V(UV)W,(17.72)

as we set out to do.

Other cross product identities, whose derivations are left as exercises, include

(U×V)×(U×W)=(U(V×W))U(17.77)(U×V)(W×X)=(UW)(VX)(UX)(VW)(17.78)U(V×W)=V(W×U)=W(U×V)(17.79)0=U×(V×W)+V×(W×U)+W×(U×V).(17.80)\begin{aligned}\left( \mathbf{U}\times\mathbf{V}\right) \times\left( \mathbf{U} \times\mathbf{W}\right) & =\left( \mathbf{U}\cdot\left( \mathbf{V} \times\mathbf{W}\right) \right) \mathbf{U}\ \ \ \ \ \ \ \ \ \ \left(17.77\right)\\\left( \mathbf{U}\times\mathbf{V}\right) \cdot\left( \mathbf{W} \times\mathbf{X}\right) & =\left( \mathbf{U}\cdot\mathbf{W}\right) \left( \mathbf{V}\cdot\mathbf{X}\right) -\left( \mathbf{U}\cdot \mathbf{X}\right) \left( \mathbf{V}\cdot\mathbf{W}\right)\ \ \ \ \ \ \ \ \ \ \left(17.78\right)\\\mathbf{U}\cdot\left( \mathbf{V}\times\mathbf{W}\right) & =\mathbf{V} \cdot\left( \mathbf{W}\times\mathbf{U}\right) =\mathbf{W}\cdot\left( \mathbf{U}\times\mathbf{V}\right)\ \ \ \ \ \ \ \ \ \ \left(17.79\right)\\\mathbf{0} & =\mathbf{U}\times\left( \mathbf{V}\times\mathbf{W}\right) +\mathbf{V}\times\left( \mathbf{W}\times\mathbf{U}\right) +\mathbf{W} \times\left( \mathbf{U}\times\mathbf{V}\right) .\ \ \ \ \ \ \ \ \ \ \left(17.80\right)\end{aligned}(U×V)×(U×W)(U×V)(W×X)U(V×W)0=(U(V×W))U(17.77)=(UW)(VX)(UX)(VW)(17.78)=V(W×U)=W(U×V)(17.79)=U×(V×W)+V×(W×U)+W×(U×V).(17.80)

17.10The orientation factor

In this Section, we will put forth an approach to restore the full tensor property to the volume element Z\sqrt{Z}Z and the Levi-Civita symbols εijk\varepsilon_{ijk}εijk and εijk\varepsilon^{ijk}εijk. Recall that the volume element Z\sqrt{Z}Z transforms according to the rule

Z=detJZ,(17.16)\sqrt{Z^{\prime}}=\left\vert \det J\right\vert \sqrt{Z}, \tag{17.16}Z=detJZ,(17.16)

where the presence of the absolute value limits its tensor property to orientation-preserving coordinate transformations. Correspondingly, the transformation rules for the Levi-Civita symbols εijk\varepsilon_{ijk}εijk and εijk\varepsilon^{ijk}εijk depend on the sign of detJ\det JdetJ, i.e.

εijk=sign(detJ)εijkJiiJjjJkkand(17.81)εijk=sign(detJ)εijkJiiJjjJkk(17.82)\begin{aligned}\varepsilon_{i^{\prime}j^{\prime}k^{\prime}} & =\operatorname{sign}\left( \det J\right) \varepsilon_{ijk}J_{i^{\prime}}^{i}J_{j^{\prime}} ^{j}J_{k^{\prime}}^{k}\text{ and}\ \ \ \ \ \ \ \ \ \ \left(17.81\right)\\\varepsilon^{i^{\prime}j^{\prime}k^{\prime}} & =\operatorname{sign}\left( \det J\right) \varepsilon^{ijk}J_{i}^{i^{\prime}}J_{j}^{j^{\prime}} J_{k}^{k^{\prime}}\ \ \ \ \ \ \ \ \ \ \left(17.82\right)\end{aligned}εijkεijk=sign(detJ)εijkJiiJjjJkkand(17.81)=sign(detJ)εijkJiiJjjJkk(17.82)

where

signx={+1,ifx>01,ifx<0.(17.83)\operatorname{sign}x=\left\{ \begin{array} {ll} \phantom{+} 1\text{,} & \text{if }x\gt 0\\ -1\text{,} & \text{if }x \lt 0. \end{array} \right.\tag{17.83}signx={+1,1,ifx>0ifx<0.(17.83)

As a result, the tensor property of the Levi-Civita symbols εijk\varepsilon _{ijk}εijk and εijk\varepsilon^{ijk}εijk is also restricted to orientation-preserving coordinate transformations, i.e. those for which sign(detJ)=1\operatorname{sign}\left( \det J\right) =1sign(detJ)=1.

In a Euclidean space, the full tensor property of the volume element, and therefore of the Levi-Civita symbols, can be restored by leveraging the availability of the absolute sense of orientation. Namely, let the orientation factor Π\PiΠ be the "sign" of the coordinate orientation, i.e.

Π={+1foraright-handedcoordinatesystem1,foraleft-handedcoordinatesystem.(17.84)\Pi=\left\{ \begin{array} {ll} \phantom{+} 1 & \text{for a right-handed coordinate system}\\ -1, & \text{for a left-handed coordinate system.} \end{array} \right.\tag{17.84}Π={+11,foraright-handedcoordinatesystemforaleft-handedcoordinatesystem.(17.84)

With the help of Π\PiΠ, redefine the volume element to be the quantity

ΠZ(17.85)\Pi\sqrt{Z}\tag{17.85}ΠZ(17.85)

and redefine the Levi-Civita symbols to be

εijk=eijkΠZ(17.86)εijk=ΠZeijk.(17.87)\begin{aligned}\varepsilon^{ijk} & =\frac{e^{ijk}}{\Pi\sqrt{Z}}\ \ \ \ \ \ \ \ \ \ \left(17.86\right)\\\varepsilon_{ijk} & =\Pi\sqrt{Z}e_{ijk}.\ \ \ \ \ \ \ \ \ \ \left(17.87\right)\end{aligned}εijkεijk=ΠZeijk(17.86)=ΠZeijk.(17.87)

With respect to these alternative definitions, the volume element is an unqualified relative invariant of weight 111, while the Levi-Civita symbols are absolute tensors. Furthermore, the formula

W=εijkUkVjZk(17.50)\mathbf{W}=\varepsilon_{ijk}U^{k}V^{j}\mathbf{Z}^{k} \tag{17.50}W=εijkUkVjZk(17.50)

becomes a universal expression for U×V\mathbf{U}\times\mathbf{V}U×V.

However, despite the apparent utility of this approach, there is a compelling reason to continue using the conventional definitions. Namely, the orientation factor is possible only in Euclidean spaces where the concept of orientation is available in an absolute sense. Thus,we would not be able to generalize this approach to Riemannian spaces and if we were to adopt the new definitions in Euclidean spaces, we would create a discrepancy between the two types of spaces. Meanwhile, it is a fundamental tenet of our subject to treat Euclidean spaces strictly as a special case of Riemannian spaces.

17.11Exercises

Exercise 17.1A change of coordinates is called orthogonal if

JTJ=I,(17.88)J^{T}J=I,\tag{17.88}JTJ=I,(17.88)

where JJJ is the matrix corresponding to the Jacobian of the coordinate transformation. Show that any relative tensor is an absolute tensor with respect to orthogonal transformations. In particular, show that all relative tensors are absolute tensors if we limit ourselves to Cartesian coordinates.

Exercise 17.2Show that if SjkiS_{jk}^{i}Sjki is a relative tensor of weight MMM and TtrsT_{t}^{rs}Ttrs is a relative tensor of weight NNN, then SjkiTtrsS_{jk}^{i}T_{t}^{rs}SjkiTtrs is a relative tensor of weight M+NM+NM+N. In particular, if M=NM=-NM=N, then SjkiTtrsS_{jk}^{i}T_{t}^{rs}SjkiTtrs is an absolute tensor.

Exercise 17.3Since δrstijk=eijkerst\delta_{rst}^{ijk}=e^{ijk}e_{rst}δrstijk=eijkerst, show that the statement in the preceding exercise offers an alternative reason for the tensor property of δrstijk\delta_{rst}^{ijk}δrstijk.

Exercise 17.4Show that the relative tensor property is reflexive, symmetric, and transitive in the sense described in Section 14.12.

Exercise 17.5Show that the result of contracting a relative tensor of weight MMM is also a relative tensor of weight MMM.

Exercise 17.6In three dimensions, show that the determinant of a relative tensor aija_{ij}aij of weight MMM is a relative invariant of weight 2+3M2+3M2+3M. Show that in nnn dimensions, this expression generalizes to 2+nM2+nM2+nM.

Exercise 17.7Confirm the identity

Z=det2JZ(17.15)Z^{\prime}=\det{}^{2}J~Z \tag{17.15}Z=det2JZ(17.15)

for the transformation between Cartesian and polar coordinates in two dimensions, as well as the transformation between Cartesian and spherical coordinates in three dimensions.

Exercise 17.8Show that

εiki=0.(17.89)\varepsilon_{\cdot ik}^{i}=0.\tag{17.89}εiki=0.(17.89)

Exercise 17.9Show that the determinants of AjiA_{\cdot j}^{i}Aji and AijA_{i}^{\cdot j}Aij are the same. Thus, the symbol AAA introduced in Section 17.5 is well-defined regardless of which index of AijA_{ij}Aij is raised or which index of AijA^{ij}Aij is lowered.

Exercise 17.10In a one-dimensional space, show that εiZi\varepsilon^{i}\mathbf{Z}_{i}εiZi is a unit vector that points in the direction of Z1\mathbf{Z}_{1}Z1. Conclude that it is therefore an invariant, but only with respect to orientation-preserving coordinate transformations.

Exercise 17.11By appealing directly to the definition of the covariant derivative, show that it is metrinilic with respect to the Levi-Civita symbol, i.e.

pεijk=0.(17.40)\nabla_{p}\varepsilon^{ijk}=0. \tag{17.40}pεijk=0.(17.40)

Exercise 17.12Use the metrinilic property of the Levi-Civita symbols to show the same for the delta systems, i.e.

mδrstijk,mδrsij,mδri=0.(17.90)\nabla_{m}\delta_{rst}^{ijk},\ \ \nabla_{m}\delta_{rs}^{ij},\ \ \nabla _{m}\delta_{r}^{i}=0.\tag{17.90}mδrstijk,mδrsij,mδri=0.(17.90)

Exercise 17.13In a three-dimensional space, show that

εijk=Zi(Zj×Zk)(17.91)\varepsilon_{ijk}=\mathbf{Z}_{i}\cdot\left( \mathbf{Z}_{j}\times \mathbf{Z}_{k}\right)\tag{17.91}εijk=Zi(Zj×Zk)(17.91)

in a right-handed coordinate system. Similarly, show that

Zi=12εijkZj×Zk,(17.92)\mathbf{Z}^{i}=\frac{1}{2}\varepsilon^{ijk}\mathbf{Z}_{j}\times\mathbf{Z}_{k},\tag{17.92}Zi=21εijkZj×Zk,(17.92)

subject to the same qualification.

Exercise 17.14Show that

Zi×Zi=0.(17.93)\mathbf{Z}^{i}\times\mathbf{Z}_{i}=\mathbf{0}.\tag{17.93}Zi×Zi=0.(17.93)

Exercise 17.15Show that

(U×V)×(U×W)=(U(V×W))U.(17.77)\left( \mathbf{U}\times\mathbf{V}\right) \times\left( \mathbf{U} \times\mathbf{W}\right) =\left( \mathbf{U}\cdot\left( \mathbf{V} \times\mathbf{W}\right) \right) \mathbf{U.} \tag{17.77}(U×V)×(U×W)=(U(V×W))U.(17.77)

Exercise 17.16Show that

(U×V)(W×X)=(UW)(VX)(UX)(VW).(17.78)\left( \mathbf{U}\times\mathbf{V}\right) \cdot\left( \mathbf{W} \times\mathbf{X}\right) =\left( \mathbf{U}\cdot\mathbf{W}\right) \left( \mathbf{V}\cdot\mathbf{X}\right) -\left( \mathbf{U}\cdot\mathbf{X}\right) \left( \mathbf{V}\cdot\mathbf{W}\right) . \tag{17.78}(U×V)(W×X)=(UW)(VX)(UX)(VW).(17.78)

Exercise 17.17Demonstrate that

U(V×W)=V(W×U)=W(U×V)(17.79)\mathbf{U}\cdot\left( \mathbf{V}\times\mathbf{W}\right) =\mathbf{V} \cdot\left( \mathbf{W}\times\mathbf{U}\right) =\mathbf{W}\cdot\left( \mathbf{U}\times\mathbf{V}\right) \tag{17.79}U(V×W)=V(W×U)=W(U×V)(17.79)

by showing that each product equals

εijkUiVjWk.(17.94)\varepsilon_{ijk}U^{i}V^{j}W^{k}.\tag{17.94}εijkUiVjWk.(17.94)

Exercise 17.18Use the identity

U×(V×W)=(UW)V(UV)W,(17.72)\mathbf{U}\times\left( \mathbf{V}\times\mathbf{W}\right) =\left( \mathbf{U}\cdot\mathbf{W}\right) \mathbf{V}-\left( \mathbf{U}\cdot \mathbf{V}\right) \mathbf{W,} \tag{17.72}U×(V×W)=(UW)V(UV)W,(17.72)

to show that

U×(V×W)+V×(W×U)+W×(U×V)=0.(17.80)\mathbf{U}\times\left( \mathbf{V}\times\mathbf{W}\right) +\mathbf{V} \times\left( \mathbf{W}\times\mathbf{U}\right) +\mathbf{W}\times\left( \mathbf{U}\times\mathbf{V}\right) =\mathbf{0}. \tag{17.80}U×(V×W)+V×(W×U)+W×(U×V)=0.(17.80)

Exercise 17.19For the two-dimensional cross product V=×U\mathbf{V}=\times\mathbf{U}V=×U, described in Section 17.8.2, show that

V=εijUiZj(17.70)\mathbf{V}=\varepsilon_{ij}U^{i}\mathbf{Z}^{j} \tag{17.70}V=εijUiZj(17.70)

in a right-handed coordinate system and

V=εijUiZj(17.71)\mathbf{V}=-\varepsilon_{ij}U^{i}\mathbf{Z}^{j} \tag{17.71}V=εijUiZj(17.71)

in a left-handed coordinate system.

17. The Levi-Civita Symbol and the Cross Product (2025)

FAQs

What is the symbol of Levi-Civita? ›

Also, if the order is a cyclic permutation of {1, 2, 3}, then the value is +1. For this reason ϵijk is also called the permutation symbol or the Levi-Civita permutation symbol. We can also indicate the index permutation more generally using the following identities: ϵijk = ϵjki = ϵkij = −ϵjik = −ϵikj = −ϵkji.

What is the Levi-Civita tensor symbol? ›

Tensor Analysis

Show that the two-index Levi-Civita symbol ε ij is (in 2-D space) a pseudotensor. Identify each quantity in the following equation as a tensor or a pseudotensor: v = ω × r .

What is the Levi-Civita symbol in 3d? ›

Three dimensions

That is, εijk is 1 if (i, j, k) is an even permutation of (1, 2, 3), −1 if it is an odd permutation, and 0 if any index is repeated. In three dimensions only, the cyclic permutations of (1, 2, 3) are all even permutations, similarly the anticyclic permutations are all odd permutations.

Is Levi-Civita antisymmetric? ›

LeviCivita[alpha, beta, mu, nu, ...], displayed as or , respectively for the galilean and nongalilean case, is a computational representation for the totally antisymmetric LeviCivita pseudo-tensor. The number of indices in LeviCivita is not restricted to the spacetime dimension.

What is the symbol of the cross of Lorraine? ›

The Cross of Lorraine is a double cross that appeared in the symbolism of the Dukes of Anjou, who became Dukes of Lorraine from 1431. Since Joan of Arc carried it on her banner, this cross has become a symbol of national independence, as well as a sign of rallying in both victory and defeat.

What is the uniqueness of Levi-Civita? ›

In Riemannian or pseudo-Riemannian geometry (in particular the Lorentzian geometry of general relativity), the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold (i.e. affine connection) that preserves the (pseudo-)Riemannian metric and is torsion-free.

What is the symbol for tensor product? ›

The analogue in linear algebra is called tensor product and is represented by the symbol .

What does a tensor represent? ›

“In mathematics, tensors are geometrical objects that describe the linear relationships between geometric, nu- merical, and other tensile vectors.” “The simplest way to imagine a tensor is that it's a vector in a product space.

What is the symbol for the square tensor product? ›

In any case, since tensor product is and tensor sum is ⊕, it seems obvious that the × and the + refer to the arithmetical operations of multiplication and addition, not to a letter.

Is the permutation symbol a tensor? ›

The symbol can also be interpreted as a tensor, in which case it is called the permutation tensor.

What is EIJK? ›

The permutation tensor is written as eijk where i, j, and k are indices corresponding to the three coordinate directions. The. permutation tensor is defined to have the following values: • 0 if any two indices are the same. eijk = • + 1 if all three indices are different and are cyclic.

Is Levi-Civita isotropic? ›

We've just seen that the only 3rd rank isotropic tensor is the Levi-Civita tensor, so the B term is proportional to ∇ × v and thus is forbidden by reflection symmetry.

How do you denote a tensor? ›

In the most general representation, a tensor is denoted by a symbol followed by a collection of subscripts, e.g. In most instances it is assumed that the problem takes place in three dimensions and clause (j = 1,2,3) indicating the range of the index is omitted.

What is the symbol of Canarias? ›

List of animal and plant symbols of the Canary Islands
IslandNatural symbols
TenerifeFringilla teydea (Tenerife blue chaffinch) and Dracaena draco (Drago)
Gran CanariaCanis lupus familiaris (Canary Mastiff) and Euphorbia canariensis (Canary Island spurge)
5 more rows

What is the symbol of the Chi Rho? ›

The Chi Rho (☧, English pronunciation /ˈkaɪ ˈroʊ/; also known as chrismon) is one of the earliest forms of the Christogram, formed by superimposing the first two (capital) letters—chi and rho (ΧΡ)—of the Greek ΧΡΙΣΤΟΣ (rom: Christos) in such a way that the vertical stroke of the rho intersects the center of the chi.

What is the symbol of the French independence? ›

The Liberty Tree, officially adopted in 1792, is a symbol of the everlasting Republic, national freedom, and political revolution. It has historic roots in revolutionary France as well as America, as a symbol that was shared by the two nascent republics.

What is the symbol of circle above cross? ›

The ankh symbol—sometimes referred to as the key of life or the key of the nile—is representative of eternal life in Ancient Egypt. Created by Africans long ago, the ankh is said to be the first--or original--cross.

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Merrill Bechtelar CPA

Last Updated:

Views: 5816

Rating: 5 / 5 (70 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Merrill Bechtelar CPA

Birthday: 1996-05-19

Address: Apt. 114 873 White Lodge, Libbyfurt, CA 93006

Phone: +5983010455207

Job: Legacy Representative

Hobby: Blacksmithing, Urban exploration, Sudoku, Slacklining, Creative writing, Community, Letterboxing

Introduction: My name is Merrill Bechtelar CPA, I am a clean, agreeable, glorious, magnificent, witty, enchanting, comfortable person who loves writing and wants to share my knowledge and understanding with you.